Effects of Alkali-silane Surface-Grafted Pineapple Fiber on Lamina Delamination & Drilling Damage Behaviour of Hot-Water Ageing Composites
The composite material utilization is kept increasing in recent decades, due to their less dense, durable, and significant physical, chemical and mechanical properties. The present research study aims to investigate the delamination and drilling studies effects of alkali-silane treated pineapple fiber under varying ageing condition. The fiber under alkali and silane treatment provides better machining, mechanical and bonding strength even after ageing condition, which brings an novelty to this study. By using NaOH solution and silane solution (3-Aminotrimethoxy silane) the alkali and silane treatment are carried out on fiber surface. After surface modification, the composite are fabricated using hand layup method. For understanding how the delamination effects are occurred on composite, are assessed by treating the composite laminates under hot water ageing for a period of 30 days. The drilling studies, mechanical load bearing studies are carried out as per the ASTM standard. The study analysis reported that the composite under N1 specimen, aged in tap water at 50 °C for 30 days, showed remarkable retention of its mechanical properties, with an Interlaminar shear strength (ILSS) of 23.94 MPa and a V-Notch shear strength of 20.81 MPa, as well as excellent fatigue resistance of 21,012 cycles at 25% UTS, 19,260 cycles at 50% UTS, and 18,141 cycles at 75% UTS when compared to other composite material. Furthermore, N1 composite demonstrates improved creep strain values of 0.021 at 5000 s, 0.037 at 10,000 s, and 0.152 at 15,000 s, indicating strong resistance to time-dependent deformation. Based on the research analysis, the reduced delamination and improved mechanical, machining properties are established on the composite material, which could be applied in areas like automotive, aviation, interior works on housing and infrastructural applications, sports equipment and other domains, etc.
» Reference: 10.1007/s12633-024-03152-z
» Publication Date: 20/11/2024
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº 768737