Examining the Impact of the Built Environment on Multidimensional Urban Vitality: Using Milk Tea Shops and Coffee Shops as New Indicators of Urban Vitality

Urban vitality is a critical driver of sustainable urban development, significantly contributing to the enhancement of human well-being. A thorough and multidimensional comprehension of urban vitality is essential for shaping future urban planning and policy-making. This study, focused on Chengdu, proposes a framework for assessing various dimensions of UV through the distribution of milk tea and coffee shops. Using random forest and multi-scale geographically weighted regression models, this study investigates the factors influencing urban vitality from both mathematical thresholds and spatial heterogeneity, and develops spatial maps of future vitality to inform targeted urban strategies. The results show that (1) the milk tea index is effective in capturing population vitality, while the coffee index is more closely associated with economic vitality and urban renewal; (2) office buildings (13.46%) and commercial complexes (13.70%) have the most significant impact on both economic and population vitality, while the importance of transportation factors has notably decreased; (3) the influence of these factors demonstrates spatial heterogeneity and nonlinear relationships, with subway station density of 0.5–0.8 stations per kilometer being optimal for stimulating both types of vitality. The minimum threshold for economic vitality in a given unit is a housing price exceeding 6000 RMB/m2; (4) the future vitality map suggests that urban planners should pay greater attention to non-central districts with high development potential. Moreover, spontaneous social interactions and consumer behaviors stimulated by various shops are critical components of urban vitality. In designing the physical environment and urban spatial forms, special attention should be given to enhancing the attractiveness of physical spaces and their capacity to accommodate social interaction.

» Author: Ziqi Xu

» Reference: doi: 10.3390/buildings14113517

» Publication Date: 04/11/2024

» More Information

« Go to Technological Watch





This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº 768737


                   




AIMPLAS, Plastics Technology Centre

+34 96 136 60 40