Induced Electron Traps via the PCBM in P(VDF-HFP) Composites to Enhance Dielectric and Energy Storage Performance

Polymer-based composites with excellent dielectric properties are essential for advanced energy storage applications. In this work, the [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as a filler was incorporated into the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) composite to improve its dielectric performance. P(VDF-HFP) composite films with varying PCBM concentrations were prepared via solution casting and their dielectric, energy storage, and charge–discharge properties were characterized. It was found that the doped PCBM could introduce new charge traps with an energy level of 1.25 eV that modulate charge transport and energy storage characteristics of the polymer matrix. The dielectric constant of the composites was enhanced to the maximum of 10.87 as 0.2 vol% PCBM was added, while the breakdown strength reached 455 MV/m, achieving an energy density of 7.38 J/cm3, which is 33% higher than the pristine P(VDF-HFP) film. Furthermore, the charge–discharge efficiency of the composites was enhanced 66% under the electric field of 300 MV/m. These results demonstrate that PCBM significantly improves the dielectric and energy storage properties of P(VDF-HFP) composites, providing a promising approach for the development of high-performance dielectric materials in flexible energy storage devices.

» Author: Yantao Yang

» Reference: doi: 10.3390/polym16213030

» Publication Date: 29/10/2024

» More Information

« Go to Technological Watch





This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº 768737


                   




AIMPLAS, Plastics Technology Centre

+34 96 136 60 40