Spatially Explicit Life Cycle Global Warming and Eutrophication Potentials of Confined Dairy Production in the Contiguous US

Assessing the spatially explicit life cycle environmental impacts of livestock production systems is critical for understanding the spatial heterogeneity of environmental releases and devising spatially targeted remediation strategies. This study presents the first spatially explicit assessment on life cycle global warming and eutrophication potentials of confined dairy production at a county scale in the contiguous US. The Environmental Policy Integrated Climate model was used to estimate greenhouse gases (GHGs), NH3, and aqueous nutrient releases of feed production. The Greenhouse gases, Regulated Emissions, and Energy use in Transportation model and Commodity Flow Survey were used to assess GHGs and NH3 from feed transportation. Emission-factor-based approaches were primarily used to calculate GHGs from enteric fermentation, and GHGs, NH3, and aqueous nutrient releases from manure management. Characterization factors reported by the Intergovernmental Panel on Climate Change and Tool for Reduction and Assessment of Chemicals and other Environmental Impacts model were used to compute global warming and eutrophication potentials, respectively. The analyses revealed that life cycle global warming and eutrophication potentials of confined dairy production presented significant spatial heterogeneity among the US counties. For example, the life cycle global warming potential ranged from 462 kg CO2-eq/head to 14,189 kg CO2-eq/head. Surprisingly, sourcing feed locally cannot effectively reduce life cycle global warming and eutrophication potentials of confined dairy production. The feed supply scenarios with the lowest life cycle environmental impacts depend on the life cycle environmental impacts of feed production, geographic locations of confined dairy production, and specific impact categories. In addition, installing buffer strips in feed-producing hotspots can effectively reduce life cycle nutrient releases of confined dairy production. If 200 counties with the highest life cycle EP of corn adopt buffer strips, the reduction in life cycle EP of confined dairy production could reach 24.4%.

» Author: Xiaobo Xue Romeiko

» Reference: doi: 10.3390/environments11110230

» Publication Date: 22/10/2024

» More Information

« Go to Technological Watch





This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº 768737


                   




AIMPLAS, Plastics Technology Centre

+34 96 136 60 40