Frictional Wear Behavior of Water-Lubrication Resin Matrix Composites under Low Speed and Heavy Load Conditions

Resin matrix composites are commonly utilized in water-lubricated stern tube bearings for warship propulsion systems. Low-speed and high-load conditions are significant factors influencing the tribological properties of stern tube bearings. The wear characteristics of resin-based laminated composites (RLCs), resin-based winding composites (RWCs), and resin-based homogeneous polymer (RHP) blocks were investigated under simulated environmental conditions using a ring-on-block wear tester. Simulated seawater was prepared by combining sodium chloride with distilled water. The wetting angle, coefficient of friction (COF), and mass loss were measured and compared. Additionally, their surface morphologies were examined. The results indicate a significant increase in the COFs for the three materials with an increased speed or load under dry conditions. The COF of the RLCs is the lowest, indicating that it has superior self-lubricating properties. In wet conditions, the COFs of the three materials decrease with an increasing speed or load, exhibiting a pronounced hydrodynamic effect. The COF and mass loss of RWCs are the highest, while RLCs and RHP exhibit lower COFs and mass loss values. The reticulated texture and flocculent fibers on the surface of RLC enhance the heat diffusion and improve the material wettability and water storage capacity. The surface of RWC is dense, and the friction area under dry conditions is melted and brightened. The surface of RHP is smooth, while the worn material forms an agglomerate and exhibits susceptibility to burning and blackening under dry conditions. The laminated formation method demonstrates superior tribological performance throughout the wear evolution process.

» Author: Wu Ouyang

» Reference: doi: 10.3390/polym16192753

» Publication Date: 29/09/2024

» More Information

« Go to Technological Watch





This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº 768737


                   




AIMPLAS, Plastics Technology Centre

+34 96 136 60 40