Procedure for Aggregating Indicators of Quality and Life-Cycle Assessment (LCA) in the Product-Improvement Process

Sustainable product development requires combining aspects, including quality and environmental. This is a difficult task to accomplish. Therefore, procedures are being sought to combine these aspects in the process of product improvement. Therefore, the objective of the investigation was to develop a procedure that supports the integration of quality-level indicators and life-cycle assessment (LCA) to determine the direction of product improvement. The procedure involves determining the quality indicators based on the expectations of the customer, which are subsequently processed using the formalised scoring method (PS). A life-cycle assessment index is determined for the main environmental impact criterion. According to the proposed mathematical model, these indicators are aggregated, and this process takes into account their importance in terms of product usefulness and environmental friendliness. Interpretations of the results and the direction of product improvement are from the results obtained from the modified IPA model (importance–performance analysis). The procedure is used in the verification of product prototypes, wherein the proposed approach, and its test, was carried out for a self-cooling beverage can (and its alternatives) with a “chill-on-demand” system, which is a technology supporting rapid cooling on demand. The life-cycle assessment was carried out to assess the carbon footprint, which is crucial for activities to reduce greenhouse gases. The direction of improvement of this product was shown to concern the selection of transport means, the reduction of energy use in the production phase, or the change of the method of opening the can. What is original is the proposal of a procedure for integrating the quality indicator and the life-cycle assessment indicator, taking into account the key environmental burden. The procedure can be used in manufacturing companies when designing and improving products in terms of their sustainable development.

» Author: Andrzej Pacana

» Reference: doi: 10.3390/pr12040811

» Publication Date: 17/04/2024

» More Information

« Go to Technological Watch





This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº 768737


                   




AIMPLAS, Plastics Technology Centre

+34 96 136 60 40