Numerical Study on Pile Group Effect and Carrying Capacity of Four-Barreled Suction Pile Foundation under V-H-M Combined Loading Conditions

Multi-barreled composite foundations are generally used in offshore oil platform structure. However, there is still a lack of theoretical analyses and experimental research. This paper presents the results of a three-dimensional finite element analysis of a four-barreled suction pile foundation in heterogeneous clay foundation. The pile group effect and carrying capacity are numerically simulated. The effects of different pile embedment depths, pile spacings and non-uniformity coefficients of clay on the pile group effect are studied. Considering the changes in the foundation carrying capacity under vertical, horizontal and bending moment coupling loads, the foundation carrying capacity envelopes under horizontal and moment (H-M) and vertical, horizontal and moment (V-H-M) loading modes are drawn. The results show that pile spacing and embedment depth have great influence on the pile group effect. The bearing capacity envelope of foundations under V-H-M loading mode is greatly affected by vertical load V. This can provide a reference for the selection of pile spacing and embedded depth in practical engineering design. Furthermore, the stability of foundations can be evaluated according to the relative relationship between design load and failure envelope.

» Author: Zhen Qi

» Reference: doi: 10.3390/pr10112459

» Publication Date: 20/11/2022

» More Information

« Go to Technological Watch





This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº 768737


                   




AIMPLAS, Plastics Technology Centre

+34 96 136 60 40