Ultra-thin, Flexible and High-Quality Sheet Type Speaker
With the spread of smart home appliances, the demand for diverse audio notifications is rising. Traditional dynamic speakers and buzzers in consumer electronics, often built with rigid or bulky frames, are difficult to mount on curved or irregular surfaces and fit into compact spaces, thus reducing design flexibility. These components are also vulnerable to environmental damage such as dust, moisture, and shock, requiring additional protective measures that increase costs. Acoustically, buzzers can only emit single-frequency sounds, while dynamic speakers suffer from sound congestion and rapid frequency attenuation when embedded within devices. Despite offering better sound quality, dynamic speakers are more expensive than buzzers.
To address these challenges, the technology owner has developed an ultra-thin, flexible, and cost-effective sheet type speaker that combines the advantages of both dynamic speakers and buzzers. This speaker produces high-quality sound across a broad range of frequencies. Its thin and flexible profile allows for seamless integration into various devices, significantly expanding design possibilities and fostering creative implementations. Additionally, its robust environmental resistance improves durability and reliability for long-term use in smart home appliances. This cost-effective solution also enables manufacturers to incorporate superior audio features without a significant price increase, paving the way for integrating sound as a key value-add in consumer electronics to enhance the user experience (UX).
The technology owner is seeking R&D collaboration with industrial partners interested in incorporating this sheet type speaker into their products and applications.
TECHNOLOGY FEATURES & SPECIFICATIONSCost Effective:
Design Flexibility:
High Sound Quality:
Good Environmental Resistance:
Potential applications include, but are not limited to:
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº 768737