Major air pollutants seasonal variation analysis and long-range transport of PM 10 in an urban environment with specific climate condition in Transylvania (Romania)

The air quality decrease, especially in urban areas, is related to local-scale conditions and to dispersion of air pollutants (regional and long-range) as well. The main objective of this study was to decipher the seasonal variation of PM10, NO, NO2, NOx, SO2, O3, and CO over a 1-year period (2017) and the possible relationships between air pollution and meteorological variables. Furthermore, trajectory cluster analysis and concentration-weighted trajectory (CWT) methods were used to assess the trajectories and the source-receptor relationship of PM10 in the Ciuc basin Transylvania, known as the “Cold Pole” of Romania. The pollutants show lower concentrations during warmer periods, especially during summer, and significantly higher concentrations were observed on heating season in winter due to seasonal variations in energy use (biomass burning) and atmospheric stability. Subsequently, in February, the highest concentration of PM10 was 132 ?g/m3, which is 4 times higher than the highest recorded monthly mean. Our results indicate a negative correlation between CO/temperature (??0.89), NOx/temperature (??0.84) and positive between NOx/PM10 (0.95), CO/PM10 (0.9), and NOx/CO (0.98), respectively. Dominant transport pathways were identified and the results revealed that slow-moving southerly (~?45%) and northwesterly (~?32%) air masses represent almost 80% and mainly regional flows were discerned. During 2017, increased PM10 levels were measured at the study site when air masses arrived mostly from northwest and southeast. The CWT and polarplot models show a strong seasonal variation and significant differences were observed between weekdays and weekends, namely highest PM10 concentrations during weekends at low wind speed (2–4 m/s).

» Publication Date: 03/07/2020

» More Information

« Go to Technological Watch





This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº 768737


                   




AIMPLAS, Plastics Technology Centre

+34 96 136 60 40